44 research outputs found

    Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models

    Get PDF
    Background: Statistically derived cardiovascular risk calculators (CVRC) that use conventional risk factors, generally underestimate or overestimate the risk of cardiovascular disease (CVD) or stroke events primarily due to lack of integration of plaque burden. This study investigates the role of machine learning (ML)-based CVD/stroke risk calculators (CVRCML) and compares against statistically derived CVRC (CVRCStat) based on (I) conventional factors or (II) combined conventional with plaque burden (integrated factors). Methods: The proposed study is divided into 3 parts: (I) statistical calculator: initially, the 10-year CVD/stroke risk was computed using 13 types of CVRCStat (without and with plaque burden) and binary risk stratification of the patients was performed using the predefined thresholds and risk classes; (II) ML calculator: using the same risk factors (without and with plaque burden), as adopted in 13 different CVRCStat, the patients were again risk-stratified using CVRCML based on support vector machine (SVM) and finally; (III) both types of calculators were evaluated using AUC based on ROC analysis, which was computed using combination of predicted class and endpoint equivalent to CVD/stroke events. Results: An Institutional Review Board approved 202 patients (156 males and 46 females) of Japanese ethnicity were recruited for this study with a mean age of 69±11 years. The AUC for 13 different types of CVRCStat calculators were: AECRS2.0 (AUC 0.83, P<0.001), QRISK3 (AUC 0.72, P<0.001), WHO (AUC 0.70, P<0.001), ASCVD (AUC 0.67, P<0.001), FRScardio (AUC 0.67, P<0.01), FRSstroke (AUC 0.64, P<0.001), MSRC (AUC 0.63, P=0.03), UKPDS56 (AUC 0.63, P<0.001), NIPPON (AUC 0.63, P<0.001), PROCAM (AUC 0.59, P<0.001), RRS (AUC 0.57, P<0.001), UKPDS60 (AUC 0.53, P<0.001), and SCORE (AUC 0.45, P<0.001), while the AUC for the CVRCML with integrated risk factors (AUC 0.88, P<0.001), a 42% increase in performance. The overall risk-stratification accuracy for the CVRCML with integrated risk factors was 92.52% which was higher compared all the other CVRCStat. Conclusions: ML-based CVD/stroke risk calculator provided a higher predictive ability of 10-year CVD/ stroke compared to the 13 different types of statistically derived risk calculators including integrated model AECRS 2.0

    Cardiovascular risk assessment in patients with rheumatoid arthritis using carotid ultrasound B-mode imaging

    Get PDF
    Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that affects synovial joints and has various extra-articular manifestations, including atherosclerotic cardiovascular disease (CVD). Patients with RA experience a higher risk of CVD, leading to increased morbidity and mortality. Inflammation is a common phenomenon in RA and CVD. The pathophysiological association between these diseases is still not clear, and, thus, the risk assessment and detection of CVD in such patients is of clinical importance. Recently, artificial intelligence (AI) has gained prominence in advancing healthcare and, therefore, may further help to investigate the RA-CVD association. There are three aims of this review: (1) to summarize the three pathophysiological pathways that link RA to CVD; (2) to identify several traditional and carotid ultrasound image-based CVD risk calculators useful for RA patients, and (3) to understand the role of artificial intelligence in CVD risk assessment in RA patients. Our search strategy involves extensively searches in PubMed and Web of Science databases using search terms associated with CVD risk assessment in RA patients. A total of 120 peer-reviewed articles were screened for this review. We conclude that (a) two of the three pathways directly affect the atherosclerotic process, leading to heart injury, (b) carotid ultrasound image-based calculators have shown superior performance compared with conventional calculators, and (c) AI-based technologies in CVD risk assessment in RA patients are aggressively being adapted for routine practice of RA patients

    Ultrasound-based stroke/cardiovascular risk stratification using Framingham Risk Score and ASCVD Risk Score based on “Integrated Vascular Age” instead of “Chronological Age”: A multi-ethnic study of Asian Indian, Caucasian, and Japanese cohorts

    Get PDF
    Background: Vascular age (VA) has recently emerged for CVD risk assessment and can either be computed using conventional risk factors (CRF) or by using carotid intima-media thickness (cIMT) derived from carotid ultrasound (CUS). This study investigates a novel method of integrating both CRF and cIMT for estimating VA [so-called integrated VA (IVA)]. Further, the study analyzes and compares CVD/stroke risk using the Framingham Risk Score (FRS)-based risk calculator when adapting IVA against VA. Methods: The system follows a four-step process: (I) VA using cIMT based using linear-regression (LR) model and its coefficients; (II) VA prediction using ten CRF using a multivariate linear regression (MLR)based model with gender adjustment; (III) coefficients from the LR-based model and MLR-based model are combined using a linear model to predict the final IVA; (IV) the final step consists of FRS-based risk stratification with IVA as inputs and benchmarked against FRS using conventional method of CA. Area-under-the-curve (AUC) is computed using IVA and benchmarked against CA while taking the response variable as a standardized combination of cIMT and glycated hemoglobin. Results: The study recruited 648 patients, 202 were Japanese, 314 were Asian Indian, and 132 were Caucasians. Both left and right common carotid arteries (CCA) of all the population were scanned, thus a total of 1,287 ultrasound scans. The 10-year FRS using IVA reported higher AUC (AUC =0.78) compared with 10-year FRS using CA (AUC =0.66) by ~18%

    Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/non-COVID-19 Frameworks using Artificial Intelligence Paradigm: A Narrative Review

    Get PDF
    Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for lowincome countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, lowcost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework

    Cardiovascular/stroke risk prevention: A new machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics with conventional risk factors

    No full text
    Motivation: Machine learning (ML)-based stroke risk stratification systems have typically focused on conventional risk factors (CRF) (AtheroRisk-conventional). Besides CRF, carotid ultrasound image phenotypes (CUSIP) have shown to be powerful phenotypes risk stratification. This is the first ML study of its kind that integrates CUSIP and CRF for risk stratification (AtheroRisk-integrated) and compares against AtheroRisk-conventional. Methods: Two types of ML-based setups called (i) AtheroRisk-integrated and (ii) AtheroRisk-conventional were developed using random forest (RF) classifiers. AtheroRisk-conventional uses a feature set of 13 CRF such as age, gender, hemoglobin A1c, fasting blood sugar, low-density lipoprotein, and high-density lipoprotein (HDL) cholesterol, total cholesterol (TC), a ratio of TC and HDL, hypertension, smoking, family history, triglyceride, and ultrasound-based carotid plaque score. AtheroRisk-integrated system uses the feature set of 38 features with a combination of 13 CRF and 25 CUSIP features (6 types of current CUSIP, 6 types of 10-year CUSIP, 12 types of quadratic CUSIP (harmonics), and age-adjusted grayscale median). Logistic regression approach was used to select the significant features on which the RF classifier was trained. The performance of both ML systems was evaluated by area-under-the-curve (AUC) statistics computed using a leave-one-out cross-validation protocol. Results: Left and right common carotid arteries of 202 Japanese patients were retrospectively examined to obtain 404 ultrasound scans. RF classifier showed higher improvement in AUC (~57%) for leave-one-out cross-validation protocol. Using RF classifier, AUC statistics for AtheroRisk-integrated system was higher (AUC = 0.99,p-value<0.001) compared to AtheroRisk-conventional (AUC = 0.63,p-value<0.001). Conclusion: The AtheroRisk-integrated ML system outperforms the AtheroRisk-conventional ML system using RF classifier

    Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization

    No full text
    The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis

    Multiclass machine learning vs. conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold standard: a 500 participants study

    No full text
    Machine learning (ML)-based algorithms for cardiovascular disease (CVD) risk assessment have shown promise in clinical decisions. However, they usually predict binary events using only conventional risk factors. Our overall goal was to develop the “multiclass machine learning (MCML)-based algorithms” (labelled as AtheroEdge 3.0ML) and assess whether considering carotid ultrasound imaging fused with conventional risk factors can provide better CVD/stroke risk prediction than conventional CVD risk calculators (CCVRC). Carotid ultrasound and coronary angiography were performed on 500 participants. Stenosis in the coronary arteries was used to assign participants a coronary angiographic score (CAS). CVD/stroke risk was determined using three types of MCML algorithms: (i) support vector machine (SVM), (ii) random forest (RF), and (iii) extreme gradient boost (XGBoost). The performance of CVD risk assessment using MCML and CCVRC (such as Framingham Risk Score, the Systematic Coronary Risk Evaluation score, and the Atherosclerotic CVD) was evaluated on test patients against the CAS as the gold standard for each class using the area-under-the-curve (AUC) and classification accuracy. The mean percentage improvement in AUC and the mean absolute improvement in accuracy over CCVRC using 90% training and 10% testing protocol (labelled as K10) were ~ 105% and ~ 28%, respectively. Of all the three MCML systems, RF showed the best performance. Further, carotid image phenotypes showed the most effective clinical feature in AtheroEdge 3.0ML performance. The AtheroEdge 3.0ML using carotid imaging are reliable, accurate, and superior to traditional CVD risk scoring methods for predicting the CVD/stroke risk due to coronary artery disease

    Low-Cost Office-Based Cardiovascular Risk Stratification Using Machine Learning and Focused Carotid Ultrasound in an Asian-Indian Cohort

    No full text
    This study developed an office-based cardiovascular risk calculator using a machine learning (ML) algorithm that utilized a focused carotid ultrasound. The design of this study was divided into three steps. The first step involved collecting 18 office-based biomarkers consisting of six clinical risk factors (age, sex, body mass index, systolic blood pressure, diastolic blood pressure, and smoking) and 12 carotid ultrasound image-based phenotypes. The second step consisted of the design of an ML-based cardiovascular risk calculator-called “AtheroEdge Composite Risk Score 2.0” (AECRS2.0ML) for risk stratification, considering chronic kidney disease (CKD) as the surrogate endpoint of cardiovascular disease. The last step consisted of comparing AECRS2.0ML against the currently utilized office-based CVD calculators, namely the Framingham risk score (FRS) and the World Health Organization (WHO) risk scores. A cohort of 379 Asian-Indian patients with type-2 diabetes mellitus, hypertension, and chronic kidney disease (stage 1 to 5) were recruited for this cross-sectional study. From this retrospective cohort, 758 ultrasound scan images were acquired from the far walls of the left and right common carotid arteries [mean age = 55 ± 10.8 years, 67.28% males, 91.82% diabetic, 86.54% hypertensive, and 83.11% with CKD]. The mean office-based cardiovascular risk estimates using FRS and WHO calculators were 26% and 19%, respectively. AECRS2.0ML demonstrated a better risk stratification ability having a higher area-under-the-curve against FRS and WHO by ~30% (0.871 vs. 0.669) and ~ 20% (0.871 vs. 0.727), respectively. The office-based machine-learning cardiovascular risk-stratification tool (AECRS2.0ML) shows superior performance compared to currently available conventional cardiovascular risk calculators

    Effect of carotid image-based phenotypes on cardiovascular risk calculator: AECRS1.0

    No full text
    Today, the 10-year cardiovascular risk largely relies on conventional cardiovascular risk factors (CCVRFs) and suffers from the effect of atherosclerotic wall changes. In this study, we present a novel risk calculator AtheroEdge Composite Risk Score (AECRS1.0), designed by fusing CCVRF with ultrasound image-based phenotypes. Ten-year risk was computed using the Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study 56 (UKPDS56), UKPDS60, Reynolds Risk Score (RRS), and pooled composite risk (PCR) score. AECRS1.0 was computed by measuring the 10-year five carotid phenotypes such as IMT (ave., max., min.), IMT variability, and total plaque area (TPA) by fusing eight CCVRFs and then compositing them. AECRS1.0 was then benchmarked against the five conventional cardiovascular risk calculators by computing the receiver operating characteristics (ROC) and area under curve (AUC) values with a 95% CI. Two hundred four IRB-approved Japanese patients’ left/right common carotid arteries (407 ultrasound scans) were collected with a mean age of 69 ± 11 years. The calculators gave the following AUC: FRS, 0.615; UKPDS56, 0.576; UKPDS60, 0.580; RRS, 0.590; PCRS, 0.613; and AECRS1.0, 0.990. When fusing CCVRF, TPA reported the highest AUC of 0.81. The patients were risk-stratified into low, moderate, and high risk using the standardized thresholds. The AECRS1.0 demonstrated the best performance on a Japanese diabetes cohort when compared with five conventional calculators. [Figure not available: see fulltext.]. © 2019, International Federation for Medical and Biological Engineering

    Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models

    No full text
    Background: Statistically derived cardiovascular risk calculators (CVRC) that use conventional risk factors, generally underestimate or overestimate the risk of cardiovascular disease (CVD) or stroke events primarily due to lack of integration of plaque burden. This study investigates the role of machine learning (ML)-based CVD/stroke risk calculators (CVRCML) and compares against statistically derived CVRC (CVRCStat) based on (I) conventional factors or (II) combined conventional with plaque burden (integrated factors). Methods: The proposed study is divided into 3 parts: (I) statistical calculator: initially, the 10-year CVD/stroke risk was computed using 13 types of CVRCStat (without and with plaque burden) and binary risk stratification of the patients was performed using the predefined thresholds and risk classes; (II) ML calculator: using the same risk factors (without and with plaque burden), as adopted in 13 different CVRCStat, the patients were again risk-stratified using CVRCML based on support vector machine (SVM) and finally; (III) both types of calculators were evaluated using AUC based on ROC analysis, which was computed using combination of predicted class and endpoint equivalent to CVD/stroke events. Results: An Institutional Review Board approved 202 patients (156 males and 46 females) of Japanese ethnicity were recruited for this study with a mean age of 69±11 years. The AUC for 13 different types of CVRCStat calculators were: AECRS2.0 (AUC 0.83, P<0.001), QRISK3 (AUC 0.72, P<0.001), WHO (AUC 0.70, P<0.001), ASCVD (AUC 0.67, P<0.001), FRScardio (AUC 0.67, P<0.01), FRSstroke (AUC 0.64, P<0.001), MSRC (AUC 0.63, P=0.03), UKPDS56 (AUC 0.63, P<0.001), NIPPON (AUC 0.63, P<0.001), PROCAM (AUC 0.59, P<0.001), RRS (AUC 0.57, P<0.001), UKPDS60 (AUC 0.53, P<0.001), and SCORE (AUC 0.45, P<0.001), while the AUC for the CVRCML with integrated risk factors (AUC 0.88, P<0.001), a 42% increase in performance. The overall risk-stratification accuracy for the CVRCML with integrated risk factors was 92.52% which was higher compared all the other CVRCStat. Conclusions: ML-based CVD/stroke risk calculator provided a higher predictive ability of 10-year CVD/ stroke compared to the 13 different types of statistically derived risk calculators including integrated model AECRS 2.0. © Cardiovascular Diagnosis and Therapy. All rights reserved
    corecore